12345678901234567890123456789012345678901234567890123456789012345678901234567890
--[ 1 - Introduction ]----------------------------------------------------------
----[ 1.1 - Technical Information ]---------------------------------------------
--[ 5 - Entering the network ]--------------------------------------------------
There are
----[ 5.1 - Engineering ]-------------------------------------------------------
--[ 18 - Contact ]--------------------------------------------------------------
Rotinas para operações com matrizes em C. Portável para Javascript Por que não utilizar LAPACK?
#include <stdio.h>
#include <math.h>
// Prototypes
void mxinverse(double* matrix, int n);
void mxmult(double* matrixA, double* matrixB, double* matrixC,
int mA, int nA, int mB, int nB);
void mxadd(double* matrixA, double* matrixB, double* matrixC,
int mA, int nA, int mB, int nB, double alpha, double beta);
// ToDo: Improve this function returning a status value
void mxinverse(double* matrix, int n) {
int i, j, k;
double sum;
for (i = 0; i < n; i++) {
for (j = i; j < n; j++) {
sum = matrix[i * n + j];
for (k = i - 1; k >= 0; k--) {
sum -= matrix[i * n + k] * matrix[j * n + k];
}
if (i == j) {
// What happen when sum < 0.0?
matrix[i * n + i] = sqrt(sum);
} else {
// What happen when matrix[i * n + i] == 0.0?
// ToDo: return a status value
matrix[j * n + i] = sum / matrix[i * n + i];
}
}
}
for (i = 0; i < n; i++) {
for (j = i; j < n; j++) {
sum = (i == j) ? 1.0 : 0.0;
for (k = j - 1; k >= i; k--) {
sum -= matrix[j * n + k] * matrix[j * n + k];
}
// What happen when matrix[i * n + i] == 0.0?
// ToDo: return a status value
matrix[j * n + i] = matrix[j * n + i] / matrix[i * n + i];
matrix[i * n + j] = sum / matrix[i * n + i];
}
}
for (i = 0; i < n; i++) {
for (j = i + 1; j < n; j++) {
for (k = i + 1; k < j; k++) {
matrix[j * n + i] -= matrix[j * n + k] * matrix[k * n + i];
}
// What happen when matrix[i * n + i] == 0.0?
// ToDo: return a status value
matrix[j * n + i] /= matrix[j * n + j];
}
}
}
// C[i,j] = alpha * ( A[i,j] * B[i,j] ) + beta * C[i,j] // C = A * B
// C[i,j] = alpha * ( A[j,i] * B[i,j] ) + beta * C[i,j] // C = A' * B
// C[i,j] = alpha * ( A[j,i] * B[j,i] ) + beta * C[i,j] // C = A' * B'
// C[i,j] = alpha * ( A[i,j] * B[j,i] ) + beta * C[i,j] // C = A * B'
//
void mxmult(double* matrixA, double* matrixB, double* matrixC,
int mA, int nA, int mB, int nB, double alpha, double beta) {
// ToDo: Implement the algorithm
}
// C[i,j] = alpha * A[i,j] + beta * B[i,j] + gamma
//
// Changing alpha and beta, it is possible to implement mxsub
void mxadd(double* matrixA, double* matrixB,
int mA, int nA, int mB, int nB,
double alpha, double beta, double gamma) {
}